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A novel, efficient, edge-based viscous (EBV) discretization method has been recently 
developed, implemented in a practical, unstructured-grid, node-centered, finite-volume flow 
solver, and applied to viscous-kernel computations that include evaluations of meanflow 
viscous fluxes, turbulence-model and chemistry-model diffusion terms, and the corresponding 
Jacobian contributions. Initially, the EBV method had been implemented for tetrahedral grids 
and demonstrated multifold acceleration of all viscous-kernel computations. This paper 
presents an extension of the EBV method for mixed-element grids. In addition to the primal 
edges of a given mixed-element grid, virtual edges are introduced to connect cell nodes that 
are not connected by a primal edge. The EBV method uses an efficient loop over all (primal 
and virtual) edges and features a compact discretization stencil based on the nearest 
neighbors. This study verifies the EBV method and assesses its efficiency on mixed-element 
grids by comparing the EBV solution accuracy and iterative convergence with those of well-
established solutions obtained using a cell-based viscous (CBV) discretization method. The 
EBV solver’s memory footprint is optimized and often smaller than the memory footprint of 
the CBV solver. A multifold speedup is demonstrated for all viscous-kernel computations 
resulting in significant reduction of the time to solutions for several benchmark mixed-
element-grid computations, including simulations of a flow around NASA’s juncture-flow 
model and a hypersonic, chemically reacting flow around a blunt body. 

I. Introduction 
This paper verifies and assesses a novel edge-based viscous (EBV) method for node-centered, finite-volume, 
unstructured-grid discretizations of elliptic second-order partial differential operators that represent viscous effects in 
computational fluid dynamics (CFD) equations. Node-centered edge-based schemes are widely used in unstructured-
grid Navier-Stokes solvers for inviscid and viscous fluxes [1-6]. Typical edge-based schemes for viscous fluxes 
compute solution gradients at edges. The edge gradients are evaluated either by averaging gradients computed at the 
edge endpoints or by defining an edge-based stencil of grid points [7]. The edge gradient can be augmented with an 
edge-based derivative [8] or by adding an adjustable term to damp oscillations [9]. Viscous fluxes are computed in an 
edge loop that avoids duplicate computations inherent in point and cell loops. These edge-based methods benefit from 
the efficiency of the edge loop but result in large discretization stencils that include neighbors of neighbors. 
Alternatively, a thin-layer gradient approximation can be used that includes only the edge-based derivatives, resulting 
in a compact stencil, but may degrade solution accuracy. 
 The EBV method considered in this paper follows the approach introduced in Ref. [1]. The EBV method essentially 
mimics the linear finite-element Galerkin approach on tetrahedra, preserves the compact stencil that includes only 
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immediate neighbors, but uses an edge-based implementation. The EBV method requires any two vertices of the same 
cell to be connected by an edge. Thus, the EBV implementation is straightforward on tetrahedra. The EBV method 
groups the operations required for computing viscous fluxes by edge. This recombination removes redundant 
computations inherent in the cell-based flux evaluation loop and dramatically reduces the time of viscous-kernel 
computations that include evaluations of meanflow viscous fluxes, turbulence-model and chemistry-model diffusion 
terms, and the corresponding Jacobian contributions. The EBV method allocates memory to store a few (six or nine) 
EBV coefficients per edge. The EBV coefficients represent local grid metrics, do not depend on the solution, and can 
be precomputed for static and rigidly moving grids. The EBV method has demonstrated second-order accuracy for 
linear and nonlinear diffusion on tetrahedra [10]. With a correction proposed in Ref. [10], the EBV discretization for 
the Navier-Stokes equations is also second-order accurate on tetrahedral grids.  
 The EBV method has been implemented in a large-scale Reynolds-averaged Navier-Stokes (RANS) solver, 
FUN3D [11], which is developed and maintained at the NASA Langley Research Center (LaRC). The baseline 
FUN3D finite-volume discretization scheme balances fluxes at median-dual control volumes that are centered at grid 
points. Inviscid fluxes are evaluated at medians of the edges in an efficient edge-based loop. Viscous fluxes use the 
Green-Gauss theorem to compute gradients at grid cells. For non-tetrahedral cells, the cell gradients at each edge 
within the cell are augmented with an edge derivative. Because this approach relies on cell-based gradients, the viscous 
fluxes are computed in a separate cell-based loop. In this paper, the baseline viscous-flux implementation is referred 
to as the cell-based viscous (CBV) method. The CBV method provides a compact nearest-neighbor stencil. Finite-
volume solutions using the CBV method have been extensively verified and validated through formal analysis and 
applications [12-18].  

The EBV method was initially implemented only on tetrahedra [19, 20]. A multifold acceleration of the viscous-
kernel computations was observed on tetrahedral grids. For mixed-element grids, a hybrid EBV/CBV method was 
applied: the EBV method was used on tetrahedra and the CBV method was used on cells of other types. The hybrid 
EBV/CBV solutions remained accurate, but the EBV efficiency benefits diminished. In this paper, the EBV approach 
and the EBV efficiency benefits are extended to mixed-element grids. 
 An EBV implementation is challenging on mixed-element grids because primal edges do not connect some vertices 
of non-tetrahedral cells. Thus, virtual edges are needed. There are many valid ways to introduce virtual edges. For 
example, one can assign a virtual edge to any two vertices of a cell that are not connected by a primal edge. This 
approach is not efficient as it results in many edges on non-tetrahedral grids (13 edges per grid point on hexahedral 
grids, 10 edges per grid point on prismatic grids). In the current implementation, non-tetrahedral cells of a general 
mixed-element grid are divided into tetrahedra using an algorithm based on global numbering of grid points [21]. 
Virtual edges are defined as the edges of the derived tetrahedral grid that are not present in the mixed-element grid. 
The EBV method is then implemented on the derived tetrahedral grid. The EBV coefficients are stored for primal and 
virtual edges of the grid. The viscous-kernel computations are conducted in a loop over all edges, primal and virtual, 
while the inviscid flux computations are conducted in a loop over the primal edges. This approach minimizes the 
number of edges (seven edges per grid point) and uses the same EBV routines that have already been developed for 
tetrahedral grids [19, 20].  
 Although the initial implementation in Ref. [19] is consistent for linear and nonlinear diffusion equations, 
truncation-error and discretization-error analyses reported in Ref. [10] reveal that the EBV method of Ref. [19] has a 
slight inconsistency for the Navier-Stokes equations in presence of highly non-smooth viscosity coefficients. The 
effects of this inconsistency on accuracy of benchmark-flow solutions are indiscernible on coarse and medium 
practical grids but can be observed on extremely fine grids. In the current study, this inconsistency has been eliminated, 
and all simulations are performed with the fully consistent second-order accurate EBV discretization. 
 Additional memory savings and efficiency gains are obtained on mixed-element grids because, for grid points that 
are surrounded by non-tetrahedral cells, the EBV stencil is significantly smaller than the CBV stencil, resulting in 
reduction of off-diagonal terms in the Jacobian, reduced memory footprint, and a speedup of the linear solver. In the 
CBV method, the number of off-diagonal blocks in a Jacobian row corresponding to an interior grid point is 
determined by the number of individual vertices in the cells that surround this point. On a hexahedral grid, this is on 
average 26 off-diagonal blocks; on a prismatic grid, this is on average 20 off-diagonal blocks. The Jacobian of the 
EBV method reported in this article averages 14 off-diagonal blocks per grid point.   

The material in the paper is presented in the following order. Section II outlines the baseline finite-volume 
discretization methods and iterative solvers. Section III provides an overview of the previously documented 
implementation and performance of the EBV method on tetrahedral grids. Section IV details the current EBV 
implementation on mixed-element grids. Section V verifies the EBV mixed-element implementation by comparing 
the EBV and CBV RANS solutions for a benchmark turbulent flow on a family of prismatic-hexahedral grids and 
analyzes the EBV efficiency benefits. Section VI presents the EBV solutions for a subsonic flow around NASA’s 
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juncture-flow model and for a high-enthalpy, chemically reacting, hypersonic flow around a hemisphere-cylinder 
configuration. Section VII summarizes the observed results. 

II. Baseline Discretization and Iteration Methods 

This section presents components of the baseline finite-volume discretization. Nonlinear iterative solvers that are 
used in this study are also outlined.  

A. Baseline Discretization Scheme 
The baseline finite-volume solver is used for equations discretized on unstructured mixed-element grids that may 

contain tetrahedra, pyramids, prisms, and hexahedra. The residuals are evaluated on a set of median-dual control 
volumes centered at grid points. Edge-based inviscid fluxes are computed at primal edge medians using an 
approximate Riemann solver. In the current study, Roe’s flux-difference splitting [22] is used. For second-order 
accuracy, density, pressure, and velocity are reconstructed by a UMUSCL (Unstructured Monotonic Upstream-
centered Scheme for Conservation Laws) scheme [23, 24]. The negative variant (SA-neg) [25] of the Spalart-Allmaras 
turbulence model [26] is used in this study. The spatial discretization of the SA-neg turbulence model uses a first-
order accurate convection scheme. For the discretization of viscous fluxes, the Green-Gauss theorem is used to 
compute cell-based gradients. On tetrahedral grids, this CBV approach is equivalent to a Galerkin approximation [1]. 
For non-tetrahedral grids, cell-based Green-Gauss gradients are combined with edge-based gradients [9, 27, 28] to 
improve stability of viscous operators and prevent odd-even decoupling. In this paper, the edge-normal augmentation 
[9, 28] is used. The diffusion terms in the turbulence and chemistry models are handled similarly. The vorticity-based 
source term for the turbulence model is computed using velocity gradients evaluated by the Green-Gauss method on 
dual control volumes. Boundary conditions are discussed in Ref. [29], including subsonic pressure-based outflow, 
farfield based on the Roe’s Riemann solver, symmetry, and viscous-wall boundary conditions used in this study. 

B. Baseline Iterative Solver 
The baseline nonlinear iterations use a defect-correction method with nonlinear residuals representing the target 

operator and an approximate Jacobian representing the driver operator. For RANS solutions, the meanflow and SA-
neg Jacobians are decoupled. For chemically reacting flows, the meanflow and chemistry-model Jacobians are fully 
coupled. The approximate Jacobian for the meanflow equations is formed using the linearization of the first-order 
flux-vector splitting inviscid fluxes [30] and the second-order viscous fluxes. The approximate Jacobians for the SA-
neg and chemistry-model equations include the contributions from the advection, diffusion, and source terms. The 
exact linearization is used for the advection and diffusion terms. The pseudotime term is controlled by a Courant-
Friedrichs-Lewy (CFL) number that can be predefined or ramped linearly within a specified number of nonlinear 
iterations. Nonlinear iterations can reuse the Jacobian computed at a previous iteration; Jacobian updates are scheduled 
according to the convergence of the nonlinear residual. Every tenth nonlinear iteration always performs the Jacobian 
update; other nonlinear iterations may skip the update if the residual reduction in the previous nonlinear iteration 
exceeded a specified target. This option is referred to as “smart” Jacobian update. The smart Jacobian update is 
performed separately for the meanflow and SA-neg Jacobians. At each nonlinear iteration, the linear system is solved 
using a specified number of point-implicit Gauss-Seidel (GS) sweeps with multicolor ordering. The resulting linear 
solution is added to the nonlinear solution.  

C. HANIM Iterative Solver 
Hierarchical adaptive nonlinear iteration method (HANIM) is a strong nonlinear solver that is based on a hierarchy 

of modules including a preconditioner, a matrix-free linear solver, realizability check, nonlinear control, and CFL 
adaption modules [31-36]. HANIM enhances the baseline iterative solver with a mechanism for an automatic adaption 
of the pseudotime step to increase convergence rate and overcome instabilities occurring in transient solutions. The 
HANIM preconditioner is similar to the baseline defect-correction method. The matrix-free linear solver [37-39] uses 
Fréchet derivatives and a generalized conjugate residual (GCR) [37] method from the family of Krylov methods. 
HANIM prescribes the residual reduction targets for the preconditioner, the GCR solver, and nonlinear solution 
updates and specifies the maximum number of linear iterations allowed in the preconditioner and the maximum 
number of search directions to be used in the GCR solver. HANIM increases the CFL number if all the HANIM 
modules have reported success. On the other hand, if any of the modules fails, HANIM discards the correction and 
aggressively reduces the CFL number. HANIM performs Jacobian updates at the beginning of each nonlinear iteration. 
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III. Edge-Based Viscous (EBV) Method for Tetrahedral Grids 
The EBV method for tetrahedra was derived, analyzed, and applied for diffusion and RANS equations in Refs. 

[10, 19, 20]. The EBV method precomputes and stores EBV coefficients at each edge. As was rigorously proved in 
Ref. [20], the 3 × 3 matrix of the EBV coefficients required for the Navier-Stokes equations is symmetric for interior 
edges that are fully surrounded by tetrahedra. Six coefficients fully define a symmetric 3 × 3 matrix. However, 
symmetry of the EBV matrix is not established for the boundary edges, where three additional coefficients were used. 
The EBV implementation reported in Ref. [20] allocated memory for nine EBV coefficients at each edge.  
 The EBV and CBV solutions computed by the baseline iterative solver were compared for a benchmark flow on a 
family of tetrahedral grids. The residual reduction per iteration and final solutions computed with the EBV and CBV 
methods were almost identical. For the meanflow viscous fluxes and Jacobian evaluation, the EBV speedup of at least 
59% (a speedup factor of 2.5) was observed. The EBV speedup is defined as the difference between the CBV time 
and the EBV time divided by the CBV time and multiplied by 100%. The EBV speedup factor is defined as the CBV 
time divided by the EBV time. The implementation of the baseline CBV method for the meanflow fluxes and Jacobian 
is highly optimized, which makes this significant EBV efficiency gain more impressive. For evaluations of the 
diffusion term of the SA-neg turbulence model and the corresponding Jacobian contributions, the EBV speedup was 
much higher, at least 94% (a speedup factor of 17). See Ref. [20] for more details. 
 The truncation error analysis reported in Ref. [10] revealed that the EBV discretization described in Ref. [19] is 
missing some terms resulting in a loss of consistency. The loss of consistency was also observed in discretization error 
analysis for manufactured solutions on extremely fine grids. The missing terms affect momentum and energy 
conservation equations and include products of velocity gradients and viscosity gradients. In the EBV implementation 
used in this paper, appropriate source terms are added to the affected equations. The truncation and discretization 
analyses of the corrected EBV formulation confirm the second-order accuracy for the same manufactured solutions 
[10]. The EBV correction terms have been added to the residuals of the momentum and energy conservation equations 
but currently are not incorporated into the approximate Jacobian used in iterative solvers. Note that this correction has 
a negligible effect on EBV solutions for the benchmark flows reported in Refs. [19, 20], partially because the grids 
used in those studies are not sufficiently fine to discern the loss of consistency.   
 In Ref. [20], a hybrid EBV/CBV method was used to compute solutions on mixed-element grids. The EBV method 
was applied to edges that belong to tetrahedra and the CBV method was applied on non-tetrahedral cells. The hybrid 
EBV/CBV solutions proved to be accurate and matched the CBV solutions and convergence history almost perfectly. 
However, the hybrid method produced no efficiency gains because the domain decomposition method used in that 
study is solely based on equidistribution of point-based operations and results in some partitions that contain only non-
tetrahedral cells. 

In this paper, an alternative and far more efficient EBV approach to discretization of viscous terms on mixed-
element grids is proposed. The non-tetrahedral cells of a mixed-element grid are divided into tetrahedra using the 
algorithm proposed in Ref. [21]. The derived tetrahedral grid has the same grid points and contains all primal edges 
of the original mixed-element grid. The residuals of the conservation law equations are defined at grid points. The 
inviscid fluxes are discretized on the original mixed-element grid. The residual contributions from the inviscid fluxes 
and the corresponding Jacobian terms are computed in a loop over primal edges. The EBV terms are computed on the 
derived tetrahedral grid. The EBV residual contributions and the Jacobian terms are computed in a separate loop over 
primal and virtual edges.  

IV. Implementation of EBV Method on Mixed-Element Grids 

On a mixed-element grid, the EBV method is formulated on a derived tetrahedral grid that has the same grid points as 
the target mixed-element grid. For this reason, the formulation of the EBV method for mixed-element grids is 
essentially the same as the formulation for tetrahedral grids reported in Refs. [19, 20] with correction source terms 
added to the momentum and energy conservation equations. However, the EBV implementation on mixed-element 
grids is significantly different from the implementation on tetrahedra. This section describes the implementation 
details of the EBV method for mixed-element grids. 

A. Precomputing EBV coefficients 
 The EBV preprocessing is conducted following the standard startup procedure of loading and partitioning a mixed-
element grid and creating all necessary data structures for grid points, edges, faces, and cells. Within each local 
partition, non-tetrahedral cells are divided into tetrahedra. The division based on the global grid-point numbering [21] 
is unique, ensures consistency of the derived tetrahedral grid across the partitions, and adds virtual edges to the primal 
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edges of the mixed-element grid. An EBV edge pointer array of the dimensions (2, number of EBV edges) is created 
for edges of the derived tetrahedral grid; the EBV edges include all primal and virtual edges. Thus, there are two sets 
of edges: the set of primal edges of the mixed-element grid is used to compute inviscid fluxes, and the set of EBV 
edges is used to compute viscous fluxes.  
 An auxiliary edge-based array is created for pointers to the compressed-row data structure for the Jacobian off-
diagonal terms. This auxiliary array has dimensions of (2, number of EBV edges) and facilitates access to the off-
diagonal terms of the Jacobian at each edge. Another auxiliary array is created to mark all boundary grid points. This 
marking distinguishes the boundary EBV edges from the interior EBV edges. The EBV coefficients are precomputed 
in a loop over cells of the derived tetrahedral grid. See Ref. [20] for more details. The EBV data structures include 
two two-dimensional four-byte integer arrays for local cell-to-node and cell-to-edge data structures of the derived 
tetrahedral grid; two four-byte integer edge-pointer (2, number of EBV edges) arrays to point to the edge endpoints 
and to the Jacobian off-diagonal terms; a one-dimensional integer (can be logical) array for boundary-point indicators; 
two two-dimensional floating-point edge-based arrays, one array to store the six EBV coefficients per edge for a 
symmetric EBV matrix and another array to store additional three EBV coefficients per edge for a non-symmetric 
EBV matrix. For static and rigidly moving grids, the EBV cell-to-node and cell-to-edge data structures are needed 
only for the preprocessing stage and can be deallocated after the EBV coefficients have been precomputed. All other 
EBV data structures are used in the solver execution and carried through the entire simulations. 

B.  EBV method implementation and execution 
 The first step in the EBV implementation is evaluation of the velocity and viscosity gradients at grid nodes required 
for computing the correction source terms. The gradients of velocity components computed by an unweighted least-
squares method are already available at grid points. These velocity gradients are later used for inviscid-flux UMUSCL 
reconstruction. The viscosity gradients are also computed by the unweighted least-squares method in an edge-based 
loop. Currently, the laminar and eddy viscosity coefficients are recomputed from the primitive variables (density, 
velocity, and pressure) at each edge endpoints. Gradients of the laminar and eddy viscosity are computed and stored 
at grid points separately. This is a suboptimal implementation that can be improved by locally precomputing the 
combined viscosity coefficients in a loop over grid points and computing a single gradient for the combined viscosity.  
 The EBV method for evaluation of the meanflow viscous fluxes is implemented in a separate edge loop, in which 
each edge provides contributions to the meanflow residuals at the edge midpoints. The edge residual contributions are 
products of EBV coefficients at the edge representing grid metrics, solution edge differences, and viscosity edge 
averages [19, 20]. The EBV edge loop is preceded by a local loop over grid points, in which temperature and viscosity 
coefficients are precomputed and stored, and the correction terms are computed and added to the residuals. The point 
values of temperature are used to compute the temperature edge difference that is needed for the evaluation of the heat 
flux. The point values of viscosity are used to compute the edge averages. The edge averages of velocity are computed 
separately. In Ref. [20], it was shown that the matrix of EBV coefficients is symmetric with respect to the edge 
endpoints for any interior edge that is fully surrounded by tetrahedra. Only six EBV coefficients are needed for edges 
with symmetric EBV matrices. Nine EBV coefficients are needed for an edge where symmetry of the EBV matrix is 
not established. Thus, in the current implementation, all edges are assigned six EBV coefficients, and all boundary 
edges, i.e., edges with both end-points on a boundary, are assigned three additional EBV coefficients. 
 The EBV method for the SA-neg diffusion term and its Jacobian is implemented in a separate edge loop. Only one 
EBV coefficient is needed for evaluation of the SA-neg diffusion term and passed to the corresponding subroutine. 
This EBV coefficient is the trace of the EBV matrix. No additional storage is needed for the EBV implementation of 
the SA-neg diffusion term. For multi-species, multi-temperature chemistry models, the EBV diffusion terms of species 
and energy conservation equations are implemented inside the edge loop that computes viscous terms for the meanflow 
equations. At each edge, the diffusion terms of the chemistry equations use the same EBV coefficient as the SA-neg 
diffusion term, so no additional memory is needed for the EBV implementation of chemistry models.  
 The array to store the off-diagonal terms of the EBV Jacobian matrix is implemented to include only terms that 
correspond to grid points connected by the EBV edges. For mixed-element grids, this EBV implementation results in 
a significant reduction in the size of the off-diagonal Jacobian array, a smaller memory footprint for the EBV method, 
and faster matrix-vector multiplication occurring within the linear solver. For tetrahedral grids, the off-diagonal 
Jacobian array is the same for the CBV and EBV methods. The EBV memory savings and linear-solver efficiency 
gains are diminished on grids dominated by tetrahedra. The EBV efficiency gains related to viscous-kernel 
computations are realized on all grids.  
 Some boundary conditions implemented in the baseline solver use cell-based gradient evaluation. In presence of 
such boundary conditions, the rows of the EBV off-diagonal Jacobian matrix corresponding to a boundary grid point 
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are extended to include off-diagonal terms for all vertices of the cells that share the boundary grid point and have a 
face at a boundary surface.  

V. EBV Solutions on Mixed-Element Grids 

This section compares the CBV and EBV solutions on a family of prismatic-hexahedral grids. Fully converged RANS 
solutions are computed with the SA-neg turbulence model for a benchmark flow that is widely used for verification 
of RANS solvers. Viscous-kernel computations associated with the CBV and EBV methods are profiled.  Performance 
of the baseline and HANIM solvers is also assessed.  

A. Benchmark flow conditions and prismatic-hexahedral grid family 
 The three-dimensional benchmark flow considered in this section is a subsonic separated flow around a 
hemisphere-cylinder configuration [40]. This benchmark flow is described at the NASA Turbulence Modeling 
Resource (TMR) website§ and used in Refs. [19, 20] to demonstrate the EBV method on tetrahedral grids. The cylinder 
and hemisphere have diameters of unity. The combined length of the configuration is 10. The apex of the hemisphere 
is located at the origin of the coordinate system. The cylinder axis is aligned with the 𝑥-axis. The outflow conditions 
are assigned at a plane that is orthogonal to the 𝑥-axis and contains the cylinder base located at	𝑥 = 10. The symmetry 
condition is assigned at the vertical plane corresponding to	𝑦 = 0. The farfield boundary is a quadrant of a sphere 
((𝑥 − 10), + 𝑦, + 𝑧, = 𝑟,, (10 − 𝑟) ≤ 𝑥 ≤ 10, 0 ≤ 𝑦 ≤ 𝑟, −𝑟 ≤ 𝑧 ≤ 𝑟)	with the radius	𝑟 = 100. The flow 
corresponds to the reference (freestream) Mach number of 0.6, the Reynolds number of 3.5 × 104 based on the unit 
length, and an angle of attack of 19°.  
 A family of four nested, prismatic-hexahedral grids, denoted as PH0, PH1, PH2, and PH3, has been generated 
using the grid generation and coarsening programs available at the TMR website†. The PH0 grid with about 71 million 
grid points and about 1.2 million quadrilateral and 24.6 thousand triangular boundary faces has been generated first. 
The PH1, PH2 and PH3 grids are derived from the PH0 grid using the grid-coarsening program. Figure 1 shows the 
volume and surface meshes corresponding to the PH3 grid; red color indicates the cylinder surface, blue color shows 
the symmetry boundary, green color shows the outflow boundary, and orange color marks the farfield boundary. Table 
1 provides the grid statistics and the number of Central Processing Unit (CPU) cores used for each grid. The PH1, 
PH2, and PH3 mixed-element grids use the same grid points as the corresponding tetrahedral grids in Refs. [19, 20]. 
On these grids, the number of virtual edges is greater than the number of the primal edges by about 20%. The grids 
PH1, PH2 and PH3 are partitioned so that each individual partition has approximately 30,000 grid points; each 
partition of the PH0 grid has about 180,000 grid points. The solutions are computed on the NASA LaRC K4 cluster 
using Intel Gold 6148 Skylake compute nodes. Each node has 40 2.4GHz CPU cores. Intel® Fortran 2019 compiler 
has been used with the optimization level “–O2”, which is standard for FUN3D production runs. 

           
Figure 1. Volume and surface mesh for benchmark flow around hemisphere cylinder. 

                                                
§https://turbmodels.larc.nasa.gov/hc3dnumericspart2_val.html. Accessed March 21, 2022. 
†https://turbmodels.larc.nasa.gov/hc3dnumericspart2_grids.html. Accessed March 21, 2022. 
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Table 1. Family of prismatic-hexahedral grids for hemisphere cylinder. 

Grid Points Hexahedra Prisms Primal Edges Virtual Edges CPU cores 
PH0 71,368,353  62,914,560 15,728,640 221,384,352 275,832,832 400 
PH1 8,995,153 7,864,320 1,966,080 27,821,392 34,551,808 320 
PH2 1,143,081 983,040 245,760 3,514,920 4,337,152 40 
PH3 147,637 122,880 30,720 448,756 546,688 5 

B.  Verification of EBV method 
 To verify the EBV implementation, EBV solutions have been computed on the family of prismatic-hexahedral 
grids and compared with established reference solutions from the TMR website. The reference solutions [13] are 
computed on mixed-element and tetrahedral grids with the finite-volume CBV method (FUN3D_CBV) and with a 
finite-element method corresponding to a second-order accurate stabilized Petrov-Galerkin discretization (SFE). 
Figure 2 shows the grid convergence of the lift, pressure-drag, and viscous drag coefficients, and the maximum eddy 
viscosity. The eddy viscosity is nondimensionalized by the reference dynamic viscosity corresponding to the 
freestream conditions. The EBV solutions on each grid are well within the range of the reference solutions computed 
with the same degrees of freedom. On the finer grids, the EBV lift and pressure drag coefficients are aligned with the 
corresponding coefficients computed by the CBV method on tetrahedral grids. The EBV viscous drag coefficient and 
the maximum eddy viscosity are especially close to those computed by the CBV method on mixed-element grids.  

 
                               a. Lift coefficient                                          b. Pressure drag coefficient 

 
                      c. Viscous drag coefficient                  d. Maximum eddy viscosity 

Figure 2. Grid convergence of aerodynamic coefficients. 
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 The baseline iterations are compared for the EBV and CBV methods. The iteration stopping criterion is set as 
10567	for the root-mean-square (rms) norm of residuals. The maximum CFL number is set to 100. The decoupled 
linear system is solved using 30 multicolor sweeps for the meanflow and 15 multicolor sweeps for the SA-neg 
equation. The UMUSCL parameter is set to	𝜅 = 0.5. The “smart” Jacobian update is used. Figures 3 and 4 show 
iterative convergence on the PH2 and PH1 grids, respectively. Subscripts 𝑅2 and 𝑅6 denote the rms norms of the 𝑥-
momentum and SA-neg residuals, respectively; subscripts CL and CD and axis labels C> and C? denote the lift and 
drag coefficients. The EBV and CBV solutions show similar convergence per iteration and a close agreement between 
the converged aerodynamic coefficients. The EBV and CBV residual convergence plots shown in Figs. 3a and 4a 
versus iterations are hardly distinguishable. Although, the rms norms of other RANS residuals are not shown, they all 
exhibit similar trends. Such a close similarity between the CBV and EBV iterative convergence plots is somewhat 
surprising as the CBV and EBV discretizations of viscous terms on non-tetrahedral grids are expected to be 
significantly different. Apparently, the CBV and EBV discretizations are close not only on tetrahedral grids, but on 
orthogonal non-tetrahedral grids too. The iterative convergence history versus wall time in seconds is shown in Figs. 
3b and 4b. The EBV method takes less time per iteration than the CBV method and significantly reduces the time to 
converge residuals and aerodynamic forces. Comparing with the corresponding tetrahedral-grid solutions reported in 
Ref. [20], both the CBV and EBV methods use fewer iterations and converge faster on the prismatic-hexahedral grids. 

 
                         a. Nonlinear iterations                                                     b. Wall time 

Figure 3. Baseline iterations on PH2 grid. 

 
                         a. Nonlinear iteration                                           b. Wall time 

Figure 4. Baseline iterations on PH1 grid. 
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Viscous-kernel computations and linear solver 
In distinction from the EBV performance on tetrahedral mesh [20], the EBV speedup on mixed-element grids is a 

composition of the speedup of the viscous-kernel computations and the speedup of the linear solver. Tables 2, 3, and 
4 compare the wall time used by the CBV and EBV methods for viscous-kernel and linear-solver computations on the 
PH1, PH2, and PH3 grids. The data corresponding to the PH0 grid is not shown because the PH0 grid partitions are 
not consistent with the partitions of the coarser grids. The timing shown in Table 1 has been averaged over all iterations 
and recorded separately for the meanflow and SA-neg equations. The EBV method shows at least 76% speedup (a 
speedup factor of 4.2) in computing the viscous-flux contributions to the meanflow residuals, 90% speedup (a speedup 
factor of 9.7) in computing the diffusion contributions to the SA-neg residual, about 70% speedup (a speedup factor 
of 3.25) in computing the viscous-flux contributions to the meanflow Jacobian, 95% speedup (a speedup factor of 20) 
in computing the diffusion contributions to the SA-neg Jacobian, about 40% speedup in the linear solver for the 
meanflow equations, and between 21% and 27% speedup in the SA-neg linear solver.  

Table 2. Time and speedup for meanflow viscous flux and SA-neg diffusion evaluation. 

Grid Meanflow viscous fluxes SA-neg diffusion 
CBV (sec) EBV (sec) EBV speedup CBV (sec) EBV (sec) EBV speedup 

PH1 0.0498 0.0108 78% 0.0456 0.0041 91% 
PH2 0.0423 0.0101 76% 0.0386 0.0037 91% 
PH3 0.0275 0.0053 81% 0.0251 0.0026 90% 

Table 3. Time and speedup for Jacobian evaluation. 

Grid Meanflow viscous fluxes SA-neg diffusion 
CBV (sec) EBV (sec) EBV speedup CBV (sec) EBV (sec) EBV speedup 

PH1 0.2359 0.0693 71% 0.1238 0.0068 95% 
PH2 0.2274 0.0674 70% 0.1136 0.0063 95% 
PH3 0.1563 0.0484 69% 0.0794 0.0042 95% 

Table 4. Time and speedup for linear solver. 

Grid Meanflow SA-neg 
CBV (sec) EBV (sec) EBV speedup CBV (sec) EBV (sec) EBV speedup 

PH1 0.6981 0.4244 39% 0.0223 0.0166 26% 
PH2 0.6460 0.3932 39% 0.0196 0.0143 27% 
PH3 0.3401 0.1957 43% 0.0105 0.0084 20% 

In comparison with the results on tetrahedral grids reported in Ref. [20], the EBV speedup for viscous-kernel 
computations on mixed-element grids is significantly higher for the meanflow computations and a little lower for the 
SA-neg computations. The CBV time on prismatic-hexahedral grids has increased by a factor of two comparing to the 
CBV time on tetrahedral grids with the same grid points. Some increase is expected as the number of operations 
performed in each non-tetrahedral cell is increased dramatically overweighting the reduction in the number of cells. 
Somewhat surprisingly, the timing for the EBV computations on the two finer mixed-element grids has also increased 
in comparison with the timing on the corresponding tetrahedral grids, although not significantly. This minor EBV 
slowdown on mixed-element grids is attributed to suboptimal grid partitioning that does not account for EBV virtual 
edges. The EBV speedup in linear solver occurs only on non-tetrahedral grids. 

There is a factor of seven difference between the time of the EBV viscous flux evaluation and the EBV Jacobian 
evaluation. This difference is even larger than the factor-six difference observed on tetrahedral grids [20]. This 
increase is explained by a new separate-loop implementation of the EBV Jacobian. In Ref. [20], the EBV Jacobian 
was implemented in the same edge loop with the Jacobian for the inviscid fluxes. The corresponding difference 
between the SA-neg diffusion evaluation and the corresponding Jacobian is smaller (less than factor of two), but still 
significant. A similar timing is theoretically expected for residual and Jacobian evaluations. The increased time for 
the meanflow Jacobian evaluation is in part explained by the need to convert from primitive to conserved variables. 
A suboptimal partitioning may be another factor leading to the increased Jacobian time. In single-processor 
computations, the time difference between the SA-neg diffusion and Jacobian evaluations was less than 2%.  

C. Baseline iterations 
The EBV speedup of an individual nonlinear iteration depends on the fraction of time that is spent on viscous-

kernel computations. This fraction is significantly higher when the Jacobian is updated. Comparison of CBV and EBV 
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timing for a single nonlinear iteration is shown in Table 5. The timing for such computations has been averaged over 
five nonlinear iterations. The overall speedup for a nonlinear iteration that updates Jacobian varies from 44% to 47% 
(a speedup factor of 1.8-1.9). The speedup for a “lean” nonlinear iteration that does not update Jacobian is between 
35% and 38% (a speedup factor of 1.5-1.6).  

Table 5. Time and speedup for nonlinear iteration on prismatic-hexahedral grid. 

Grid Without Jacobian update With Jacobian update 
CBV (sec) EBV (sec) EBV speedup CBV (sec) EBV (sec) EBV speedup 

PH1 0.9438 0.6087 36% 1.4138 0.7938 44% 
PH2 0.8529 0.5558 35% 1.3470 0.7475 45% 
PH3 0.4747 0.2946 38% 0.7968 0.4200 47% 

The overall performance of the baseline solver using CBV and EBV methods is quantitatively assessed in Tables 
6 and 7. These are the same iterations as in the verification study described in Section VI.B. Table 6 shows the fraction 
of time spent in each type of viscous-kernel and linear-solver computations. The fraction is computed from the wall 
time that is required to reach the converged solution from the freestream setup. In these tests, the fraction of all viscous-
kernel computations is relatively small in comparison with the fraction of the linear solver; the latter takes about two 
thirds of the entire computing time. Because the baseline nonlinear iterations use smart Jacobian update, there are 
fewer Jacobian updates than the number of iterations. The EBV method dramatically reduces the fractions of all 
viscous-kernel computations, especially, on finer grids. On the PH1 grid, the reduction factor ranges from 2.1 
(meanflow Jacobian) to 14 (SA-neg Jacobian). The fraction of the linear solver time remains about the same, indicating 
that the most of the overall EBV speedup is due to speedup of the linear solver.  

Table 6. Fractions of viscous-kernel and linear-solver computations on prismatic-hexahedral grids. 

Grids Viscous 
method Iterations 

Meanflow SA-neg 
Viscous 

flux 
fraction 

Jacobian Linear 
solver 

fraction 

Diffusion 
fraction 

Jacobian Linear  
solver  

fraction  Updates Fraction Updates Fraction 

PH1 
CBV 10,908 4.9% 1,512 3.2% 68.3% 4.5% 2,499 2.8% 2.2% 
EBV 10,897 1.7% 1,510 1.5% 66.5% 0.6% 2,501 0.2% 2.6% 

PH2 CBV 4,005 4.5% 578 3.5% 68.4% 4.1% 1,033 3.1% 2.1% 
EBV 4,026 1.7% 580 1.6% 66.7% 0.6% 1,034 0.3% 2.4% 

PH3 CBV 2,199 5.2% 334 4.5% 63.8% 4.7% 543 3.7% 2.0% 
EBV 2,192 1.7% 334 2.3% 61.7% 0.8% 545 0.3% 2.7% 

 Table 7 shows the wall time to solution for the baseline solver with the CBV and EBV methods. The EBV speedup 
above 37% (a speedup factor of 1.6) is observed on all grids. This EBV speedup on prismatic-hexahedral grids is 
significant because the baseline CBV solver on such grids is fast. For example, the PH2 CBV solution converged 
almost eight times faster than the CBV solution on the corresponding tetrahedral grid [20]. Although not shown, the 
EBV speedup of the wall time to solution for the baseline solver on the PH0 grid is 42.4%.   

Table 7. Time and speedup for baseline solver on prismatic-hexahedral grids. 

Grid CBV (sec) EBV (sec) EBV speedup 
PH1 11,146 6,959 37.6% 
PH2 3,782 2,372 37.3% 
PH3 1,171 696 40.6% 

 Table 8 shows the memory requirements for the CBV and EBV solvers. The memory usage is reported by the 
portable batch system (PBS), the job scheduling software that was employed to schedule the computations. The current 
code carries all CBV data structures along with the EBV solver penalizing the EBV memory consumptions. In spite 
of this penalty, the EBV solver requires less memory than the CBV solver, saving up to 4.4% of the memory resources. 
The memory saving percentage increases on finer grid. Although not shown, the EBV method saves 8.9% memory 
(as reported by PBS) on the PH0 grid. These data indicate that on prismatic and hexahedral cells, the memory reduction 
due to fewer off-diagonal terms in the EBV Jacobian is more than sufficient to compensate the additional memory 
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allocation for virtual edges and EBV coefficients. The memory advantage of the EBV method over the CBV method 
is expected to diminish and reverse on grids dominated by tetrahedra. 

Table 8. Memory usage by baseline solver on prismatic-hexahedral grids. 

Grid CBV (kb) EBV (kb) EBV saving 
PH1 160,048,308 153,040,636 4.4% 
PH2 18,884,496 18,187,752 3.7% 
PH3 2,372,840 2,277,576 4.0% 

HANIM iterations 
The strong nonlinear iterative solver, HANIM [31], presents unique challenges and opportunities for the EBV 

method. The HANIM’s intention to operate at as high a CFL number as possible leads to an increased number of 
multicolor GS sweeps in the linear solver, possibly multiple search directions for the GCR solver, and relatively 
frequent nonlinear iteration failures, which decreases the fraction of viscous-kernel computations and challenges the 
EBV speedup. However, each HANIM iteration updates the meanflow and SA-neg Jacobians, which increases the 
fraction of viscous-kernel computations and creates opportunities for the EBV speedup. An accurate prediction of the 
EBV speedup for an individual HANIM iteration is not possible because HANIM iterations are not identical. There 
are many run-time decisions that HANIM makes based on comparison of floating-point numbers. Thus, timing of 
each HANIM iteration is sensitive to small details of discretization, previous solution, and input parameters. The 
HAMIM-CBV and HANIM-EBV convergence plots are expected to be visibly different, unlike the baseline CBV and 
EBV iteration plots shown in Figs. 3a and 4a. HANIM simulations have been conducted for the CBV and EBV 
methods on the PH2 grid. The maximum number of multicolor GS sweeps is set to 200 for the meanflow and SA-neg 
preconditioners. The preconditioner residual reduction target is set to 0.5. The GCR residual reduction target is set to 
0.92. Only one GCR search direction is allowed.  

Figure 5 illustrates convergence of the HANIM-EBV and HANIM-CBV iterations. Figures 5a and 5b show the 
convergence history of the residuals and aerodynamic coefficients versus HANIM iterations and wall time, 
respectively. The aerodynamic coefficients computed by HANIM converge to the same values as the coefficients 
computed with the baseline solver. Figure 5c shows the CFL history. As expected, the HANIM-CBV and HANIM-
EBV residual convergence histories shown in Fig. 5a are visibly different; convergence histories of aerodynamic 
coefficients are more similar. Both HANIM-EBV and HANIM-CBV iterations meet the residual convergence target, 
achieve a high CFL number, and significantly reduce the time to solution in comparison to the baseline iterations (cf. 
Fig. 3b). The CFL range of the HANIM-CBV and HANIM-EBV solvers is about the same.  

 
                                  a. HANIM iterations                                                 b. Wall time 

Figure 5. HANIM iterations on PH2 grid. 
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      c. CFL number        

Figure 5. Concluded.  

The statistics of the baseline and HANIM iterations on the PH2 grid is shown in Table 9. The HANIM convergence 
time and iteration count are compared with the time and iteration count of the baseline solver. HANIM significantly 
accelerates the solution process converging at least 38% faster than the baseline solver. The fraction of viscous-kernel 
computations in HANIM-CBV iterations decreases relative to the baseline-iteration fraction from 15.1% to 11.3%; 
the fraction of viscous-kernel computations in HANIM-EBV iterations is more similar to the baseline-iteration 
fraction, 4.2% vs. 3.9% (cf. Table 7). The HANIM-EBV solver converges 36.1% faster than the HANIM-CBV solver. 

Table 9. Nonlinear iterations on PH2 grid. 

 Baseline iterations HANIM iterations HANIM speedup 
Iterations Wall time (sec) Iterations Wall time (sec.)  

CBV 4,005 3.782 618 2.311 39% 
EBV 4,026 2.372 666 1.478 38% 

EBV speedup  37.3%  36.1%  

VI. Juncture-Flow Model 
References [19, 20] reported a hybrid EBV/CBV solution on a mixed-element grid for a flow around a NASA 

juncture-flow configuration. The EBV method was used on tetrahedra and the CBV method was used on other 
elements. No speedup was observed with the hybrid implementation because some of grid partitions contained only 
non-tetrahedral cells.  In this section, we consider a solution corresponding to the new mixed-element implementation 
of the EBV method for the same flow on the same grid and compare it with the CBV solution. Recall that the SA-neg 
model used in this demonstration cannot capture the important characteristics of separation typical for juncture flows. 
The goal of the solutions reported here is not to analyze the actual flow phenomena, but rather to verify the EBV 
implementation and assess corresponding efficiency gains on a practical mixed-element grid.  

The flow conditions for this test are the following: the freestream Mach number is 0.189, the Reynolds number is 
2,400,000 based on the crank chord of 557.17 mm, the reference temperature is 288.84 K, and the angle of attack is 
5°. A family of grids have been generated by Pointwise® using the Glyph script package GeomToMesh [41]. The 
specific mixed-element grid chosen for the study is Grid I [31, 42] that has 13,036,210 grid points, 16,645,072 
tetrahedra, 20,368,758 prisms, and 112,989 pyramids. The volume and surface mesh are shown in Fig. 6. 
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a. Volume mesh                                                       b. Surface mesh 

Figure 6 Volume and surface mesh for Grid I of juncture flow model. 

For the baseline iterations, the meanflow CFL of 50 and the SA-neg CFL of 30 are set to ensure convergence of 
all residuals to the level of	105@A. The preconditioner performs 30 multicolor GS sweeps for the meanflow and SA-
neg equations. For HANIM iterations, the following parameters are set. The maximum number of multicolor GS 
sweeps is 100 for the meanflow and SA-neg preconditioner equations. The preconditioner residual reduction target is 
0.5, and the GCR residual reduction target is 0.92. Only one GCR search direction is allowed. The mixed-element 
solutions have been computed using 10 Intel Gold 6148 Skylake compute nodes (400 cores).  

Table 10 shows aerodynamic coefficient computed from the converged CBV and EBV solutions. The matching 
digits of the EBV and CBV aerodynamic coefficients are highlighted by the bold font. The difference between the 
EBV and CBV lift coefficients is 0.17% and the difference between the EBV and CBV drag coefficients is 0.42%.  

Table 11 provides a quantitative data about the nonlinear iterations and time required to reduce the rms norm of 
the residual below	105A. A great EBV speedup of more than 55% (a speedup factor of 2.3) is observed for the baseline 
and HANIM solutions. This speedup is higher than the speedup observed on prismatic-hexahedral grids considered in 
Section V. This is unexpected but can be explained by the observation that, on this mixed-element grid, the EBV 
solvers exhibit faster asymptotic convergence rate per nonlinear iteration than the CBV solvers, see Figs. 7 and 8 for 
the baseline solver and HANIM, respectively. Specifically, the baseline EBV solver requires 75,844 nonlinear 
iterations to reduce the rms norm of the residual below	105A; the baseline CBV solver requires 128,784 nonlinear 
iterations to reach this level of convergence. Some differences in iterative convergence between EBV and CBV solvers 
are expected, but such a significant disparity is probably not a general phenomenon. As expected, HANIM 
significantly accelerates convergence of both EBV and CBV solutions, providing speedup of more than 71% (a 
speedup factor of 3.4) over the baseline solver. Both HANIM-EBV and HANIM-CBV operate at high CFL numbers 
in the range of thousands, much higher than CFL chosen for the baseline solver. 

Table 10. Aerodynamic coefficients for JFM. 

Lift Coefficient  Drag Coefficient        
CBV EBV  CBV EBV 

0.846346 0.8448907  0.0727216 0.0723803 

 Table 11. Nonlinear iterations for JFM. 

 Baseline iterations HANIM iterations HANIM speedup 
Iterations Wall time (sec) Iterations Wall time (sec.)  

CBV 128,784 156,960 12,708 44,758 71% 
EBV 75,844 70,080 7,153 18,104 74% 

EBV speedup  55%  60%  
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a. Nonlinear iterations             b. Wall time 

Figure 7. Baseline iterations on JFM mixed-element grid. 

 
a. HANIM iterations                                          b. Wall time 

 
        c. CFL number (global view)                              d. CFL number (zoomed view) 

Figure 8. HANIM iterations on JFM mixed-element grid. 
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VII. High Enthalpy Hypersonic Flow Around a Hemisphere Cylinder 
The flow considered in this section is a high-enthalpy flow around a blunt-body hemisphere-cylinder configuration 

corresponding to the freestream temperature	𝑇C = 450	𝐾	, pressure	𝑝C = 230	Pa, Mach number	𝑀C = 9.8, 
Reynolds number 𝑅𝑒M ≈ 14,000 based on the cylinder diameter, and the angle of attack	𝛼 = 0°.  A high-enthalpy 
high-speed flow is a compressible, chemically reacting flow that is governed by equations of conservation of the 
species, mixture momentum, and the total energy. The flow has been previously analyzed experimentally and 
computationally [43, 44]. Pressure is modeled as an ideal gas, heat transfer is modeled with Fourier’s law, species 
diffusion is modeled using Fick’s law, and the shear-stress is modeled with a Newtonian model. NASA polynomials 
[45] are used to compute thermodynamic properties on a per-species basis. The transport properties (diffusivity, 
viscosity, and thermal conductivity) are computed using collision integrals [46]. The full details of the equations, 
including the two-temperature model [47] that is used in this study can be found in Ref. [46]. Air is modeled using 
five species (𝑁,,𝑂,, 𝑁𝑂,𝑁,𝑂) and five reactions [48]. The freestream mass fractions are set to standard air conditions. 
A laminar flow is assumed. The wall is modeled as a non-catalytic wall with a constant temperature of 𝑇 = 555.5	𝐾 
(1000	°𝑅). Farfield is imposed on the inflow plane and extrapolation is imposed on the outflow plane.  

In these computations, inviscid fluxes are discretized with the HLLE++ Riemann solver [44, 49] and use the van 
Albada flux limiter [50].  The discrete equations are integrated in time implicitly using a local time stepping with a 
maximum CFL number of 5.0. Chemistry, momentum, and energy equations are solved fully coupled, resulting in a 
block-sparse Jacobian matrix with 10 × 10 blocks.   

Two unstructured grids are considered. A general mixed-element grid has been generated by experts using the best 
practice and is denoted as the fixed grid. The finest adapted grid generated in a grid adaptation process governed by 
NASA’s software refine [51] (see Ref. [44]) is denoted as the adapted grid. The grid statistics are shown in Table 12. 
The adapted grid is dominated by tetrahedra, the fixed grid has a comparable number of prisms and tetrahedra. For 
illustration, Fig. 9 shows the grid cross-section corresponding to 𝑧 = 0 near the boundary layer. More details about 
the flow conditions and the grids can be found in Ref. [44].  

Table 12. Grids for high-enthalpy flow around hemisphere-cylinder configuration. 

Grid Points Tetrahedra Prisms CPU cores  
Fixed 3,459,137 6,639,496 4,627,800 120  

Adapted 4,567,239 23,562,449 1,028,320 160  

      
a. Fixed grid                            b. Adapted grid 

Figure 9. Grid cross-section corresponding to	𝒛 = 𝟎. 

 The EBV and CBV baseline solvers perform 4000 nonlinear iterations on the fixed and adapted grids. To illustrate 
similarities of the EBV and CBV solutions, Figs. 10 and 11 show the transitional-rotational temperature (tt) contours 
in the 𝑧 = 0 cross-section and the hemisphere surface heating contours, respectively. The corresponding solutions are 
obtained after completion of 4000 iterations. While there are visible differences between solutions computed on the 
fixed and adapted grids, the EBV and CBV solutions computed on the same grids are almost identical. 
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a. CBV, fixed grid                            b. EBV, fixed grid 

 
c. CBV, adapted grid                            d. EBV, adapted grid 

Figure 10. Transitional-rotational temperature (𝑲) in cross-section corresponding to	𝒛 = 𝟎.  

      
a. CBV, fixed grid                            b. EBV, fixed grid 

Figure 11. Hemisphere surface heating (𝑾 𝒄𝒎𝟐⁄ ).  
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c. CBV, adapted grid                            d. EBV, adapted grid 

Figure 11. Concluded.  

 Figures 12 and 13 compare the iterative convergence on the fixed and adapted grids, respectively. The subscripts 
R1, R6, and R9 denote rms residuals of the 𝑁, mass, 𝑥-momentum, and total-energy conservation equations, 
respectively. The subscript CD and the axis label CM denote the drag coefficient. In Figs. 12a and 13a, the residuals 
and the drag coefficient are plotted versus nonlinear iterations. The CBV and EBV residuals and drag coefficients are 
indistinguishable within the plotting accuracy. In Figs. 12b and 13b, the same data are plotted versus wall time. The 
EBV solutions dramatically outperform the corresponding CBV solutions on both the fixed and adapted grids. 

 
                         a. Nonlinear iterations                          b. Wall time 

Figure 12. Iterative convergence on fixed grid. 
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                           a. Nonlinear iterations                                        b. Wall time 

Figure 13. Iterative convergence on adapted grid. 

 Table 13 shows aerodynamic coefficients computed after 4,000 iterations. The digits matching between the EBV 
and CBV coefficients computed on the same grid are highlighted by the bold font. The difference between the drag 
coefficients computed on the fixed and adapted grids is little more than 1%, the difference between the EBV and CBV 
drag coefficients computed on the same grid is 0.05% or less. The zero lift is expected for a flow at the zero angle of 
attack to an axisymmetric body. However, lack of grid symmetry results in the computed lift coefficients, which are 
very small, but not exactly zero.  

Table 13. Aerodynamic coefficients for high-enthalpy flow around hemisphere-cylinder configuration. 

Viscous 
method 

Lift Coefficient Drag Coefficient        
Fixed grid Adapted grid Fixed grid Adapted grid 

CBV 0.000000050 -0.000000003 0.00198454 0.00201037 
EBV 0.000000044 -0.000000001 0.00198340 0.00200876 

The overall performance and memory usage of the baseline solver using the CBV and EBV methods are quantitatively 
assessed in Tables 14, 15 and 16. Table 14 shows the fraction of time spent in each type of viscous-kernel and linear-
solver computations. In this chemically reacting flow, construction of the viscous Jacobian terms dominates the CBV 
solver. The viscous-term Jacobian computations consume more than half of the computing time on both fixed and 
adapted grids. The EBV method dramatically accelerates all viscous-kernel computations. The EBV speedup for the 
viscous-term Jacobian is more than 95% (a speedup factor of more than 20), reducing the viscous-kernel fraction from 
more than 56% to less than 7%. Although not shown, the EBV speedup for the linear solver is more than 21% on the 
fixed grid and 6.4% on the adapted grid. The dependence of the EBV linear-solver speedup on the grid composition 
is expected, the EBV method produces no speedup for the linear solver on tetrahedral cells. On both the grids, the 
EBV speedup for the linear solver is dwarfed by the EBV viscous-kernel speedup. As a result, the fraction of the linear 
solver grows significantly in the EBV solutions comparing with the linear-solver fraction in the CBV solutions.  

Table 14 Fractions of viscous-kernel and linear-solver computations for high-enthalpy flow around 
hemisphere-cylinder configuration. 

Grids Viscous 
method Iterations Viscous flux 

fraction 
Jacobian Linear solver 

fraction Updates Fraction 

Fixed 
CBV 4,000 2.2% 1,668 54.0% 14.7% 
EBV 4,000 1.2% 1,671 5.7% 26.0% 

Adapted CBV 4,000 1.5% 2,246 58.6% 9.4% 
EBV 4,000 1.0% 2,238 6.0% 20.3% 
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 Table 15 presents the time for completion of 4000 nonlinear iterations and the overall EBV speedup on the fixed 
and adapted grids. The EBV speedup exceeds 55.5% (a speedup factor of 2.25) on both the grids. Table 16 shows the 
memory usage. The EBV solver requires about 5% less memory than the CBV solver on the fixed grid and about 5% 
more memory than the CBV solver on the adapted grid. It is encouraging that even on grids that are heavily dominated 
by tetrahedra, the EBV memory increase is only 5%. 

Table 15. Time and speedup for baseline solver for high-enthalpy flow around hemisphere-cylinder 
configuration. 

Grid CBV (sec) EBV (sec) EBV speedup 
Fixed 32,269 14,350 55.5% 

Adapted 40,721 17,686 56.6% 

Table 16. Memory usage for baseline solver for high-enthalpy flow around hemisphere-cylinder 
configuration. 

Grid CBV (kb) EBV (kb) EBV saving 
Fixed 78,216,700 74,577,776 4.7% 

Adapted 96,410,656 101,339,772 -5.1% 

VIII. Summary and Future Work 
An efficient edge-based viscous (EBV) method for viscous-kernel computations has been extended to mixed-

element grids. The viscous kernel includes evaluations of meanflow viscous fluxes, the diffusion terms in turbulence 
and chemistry models, and the corresponding Jacobian terms. The EBV method conducts viscous-kernel computations 
in an efficient loop over edges. The EBV method has been implemented in FUN3D, a practical, node-centered, 
unstructured-grid, finite-volume flow solver developed and supported at NASA. An initial implementation on 
tetrahedral grids was previously reported and demonstrated a multifold acceleration of viscous-kernel computations. 
The EBV method for mixed-element grids introduces virtual edges that connect the vertices of non-tetrahedral cells 
that are not connected by primal edges of the mixed-element grid. The virtual edges are introduced through a consistent 
division of non-tetrahedral cells into tetrahedra resulting in a derived tetrahedral grid. The derived tetrahedral grid has 
the same grid points and contains all primal edges of the mixed-element grid. The inviscid fluxes are evaluated in a 
loop over the primal edges of the original mixed-element grid, and the viscous fluxes are evaluated in a loop over the 
primal and virtual edges of the derived tetrahedral grid.  

The EBV coefficients are defined for primal and virtual edges. Memory for six EBV coefficients is allocated for 
each interior edge of the grid, and memory for nine EBV coefficients is allocated for each boundary edge, although 
most of the boundary edges use only six EBV coefficients. This additional memory required for the EBV coefficients 
represents a fraction of the memory used by the baseline solver. The actual EBV memory footprint is often lower than 
the memory footprint of the baseline solver that uses a cell-based viscous (CBV) method on the same mixed-element 
grid. On mixed-element grids, the EBV residual accesses solutions at fewer grid nodes and reduces the number of off-
diagonal terms in the Jacobian.  

 The EBV method has been verified and assessed by comparing EBV solutions with the solutions computed by 
the baseline CBV method for three benchmark flows, namely, a subsonic separated flow at a high angle of attack 
around a hemisphere-cylinder configuration, a subsonic flow around NASA juncture-flow model, and a high-enthalpy, 
chemically reacting, hypersonic flow around a hemisphere-cylinder configuration.  

The EBV and CBV Reynolds-averaged Navier-Stokes (RANS) solutions for a subsonic separated flow around a 
hemisphere-cylinder configuration have been compared on a family of prismatic-hexahedral grids. The negative 
variant of the Spalart-Allmaras (SA-neg) turbulence model has been used. The grid convergence of the EBV solutions 
compares well with the grid convergence of the reference solutions reported at NASA’s Turbulence Modeling 
Resource website. The residual reduction per iteration and converged solutions computed with the EBV and CBV 
methods are similar on all grids. The EBV solver has been profiled in detail, including the timing and speedup 
assessment for various components of the viscous kernel and the linear solver. The EBV speedup for the meanflow 
viscous fluxes and the corresponding Jacobian is more than 70% (a speedup factor of 3.3); the EBV speedup for SA-
neg diffusion and Jacobian is at least 90% (a speedup factor of 10); the EBV speedup for the meanflow linear solver 
and the SA-neg linear solver is over 39% (a speedup factor of 1.6) and over 26% (speedup factor of 1.35), respectively. 
The EBV speedup for an individual nonlinear iteration ranges from 35% to 47%, the speedup is higher for iterations 
that update Jacobian. Overall, the EBV method provides between 37% and 41% reduction of time to solution for the 
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baseline solver on the prismatic-hexahedral grids. The EBV method also results in an up to 9% reduction in the 
memory usage.  

A strong hierarchical adaptive nonlinear iteration method (HANIM) has recently been developed to improve 
robustness of finite-volume solutions and accelerate convergence. The HANIM-EBV solver has provided an 
additional 36% reduction of time to solution on a prismatic-hexahedral grid in comparison with a highly efficient 
HANIM-CBV solver on the same grid.  

The EBV method has been assessed in application to a benchmark turbulent flow around NASA’s juncture-flow 
model (JFM) computed on a mixed-element grid. The aerodynamic coefficients computed from the converged EBV 
and CBV solutions differ by less than 0.47%. Somewhat surprisingly, the EBV solutions require significantly fewer 
nonlinear iterations to reduce root-mean-square norm of the residuals below the target level of	105A. The improved 
asymptotic convergence rate is observed for both the baseline solver and HANIM. Overall, the EBV speedup is 55% 
(a speedup factor of 2.3) for the baseline solver and 60% (a speedup factor of 2.5) for HANIM. 

The EBV method has also been assessed for a laminar, high-enthalpy, chemically reacting, hypersonic flow over 
a blunt-body configuration. The assessment includes EBV and CBV solutions on two mixed-element grids: a fixed 
grid with 3.5 million grid points was generated by experts following the best practices and an adapted grid with 4.6 
million grid points was generated by an automated grid adaptation process. The fixed grid has about 60% of tetrahedra 
and 40% of prisms; the adapted grid is dominated (more than 96% of all cells) by tetrahedral cells. The EBV and CBV 
solvers perform 4000 nonlinear iterations on each grid. The EBV and CBV solutions and the residual convergence 
versus iterations are indistinguishable within the plotting accuracy. The drag coefficients computed by the EBV and 
CBV solvers on the same grid differ by less than 0.05%. The EBV solver speedup is 55.7% (a speedup factor of 2.26) 
on the fixed grid and 57.5% (a speedup factor of 2.35) on the adapted grid. The EBV solver uses 5% less memory 
resources on the fixed grid and 5% more memory resources on the adapted grids. It is evident that on grids with a 
large fraction of non-tetrahedral cells, the Jacobian memory reduction enabled by the EBV method outpaces the EBV 
memory allocation for virtual edges and EBV coefficients. 

There are several directions for future extensions of the EBV method. The modern computer architectures, e.g., 
graphics processing units (GPU), favor computations with a smaller memory footprint. Significant benefits are 
expected from porting mixed-element EBV solvers on GPU-based computers. Modern turbulence models introduce a 
quadratic constitutive relation (QCR) which is often implemented as a nonlinear correction to the shear stresses. The 
QCR correction involves a product of velocity gradient terms. Extension of the EBV method to viscosity terms that 
involve nonlinear functions of solution gradients is an important topic for future research. A solid theoretical 
foundation for accuracy and stability of the EBV solutions for various sets of flow equations is critical for establishing 
confidence in EBV solutions and is another active research direction. Practical mixed-element grids often include non-
tetrahedral cells that are highly stretched, skewed, and twisted, resulting in highly non-planar quadrilateral faces. Such 
geometrical features complicate division of non-tetrahedral cells into tetrahedra and generation of corresponding 
virtual edges for the EBV method. The EBV virtual edges rely on a derived tetrahedral grid that is expected to have 
the same set of grid points and preserve all edges of the baseline mixed-element grid. Robust generation of valid 
tetrahedral grids from given mixed-element grids is another important topic of the future research.  
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